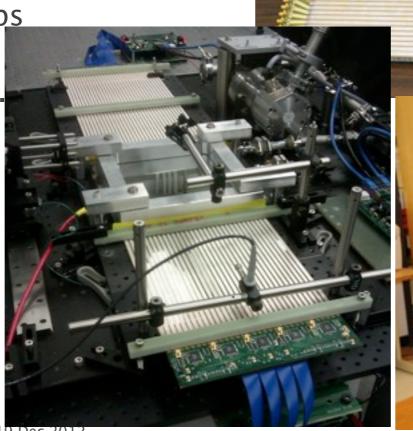
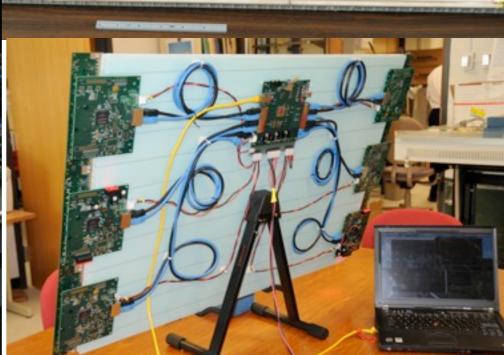


Integration, Optimization & Support for the Community


Bob Wagner LAPPD Collaboration Wednesday 19 Dec 2012



Integration

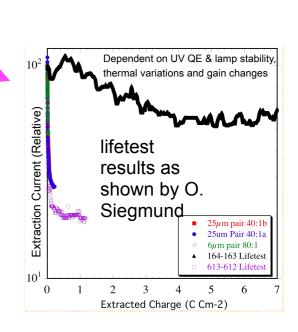
- Turning tubes into systems
 - Tube sealed detector with HV and anode strip, no connectors
 - Instrumentation with ground plane, analog card, digital card, central control
- Turning systems into useful field systems
 - software/firmware for custom readout electronics
 - · calibration of ASIC, tile system
- on-site support for first adopters
 - · rôle to be filled by labs
 - physicist & electronics eng./tech.

Bob Wagner, Argonne, LAPPD2 DOE Review, 19 Dec 2012

Optimization/Improvement — Performance

- Photocathode
 - Incremental improvement of existing "recipes"
 - Quantum efficiency of >40%? Via understanding of photocathode material science
- Microchannel plates see Michael Minot presentation
 - Smaller pore size increased time & spatial resolution
 - Increased Open Area Ratio (OAR) p.e. multiplication efficiency, 1st strike localization
 - Funneled pore opening increased OAR, photocathode deposited on funnel?
- Atomic Layer Deposition (ALD)
 - Determination of optimized ALD physical/chemical parameters for baseline materials
 - Higher Secondary Electron Emission materials
 - Positive thermal coefficient for resistivity thermal run-away prevention, higher rate capability

Optimization/Improvement — Performance (cont.)


- Anode Strip Line
 - Determine optimum pitch
 - · Strip geometry optimization, i.e. width, material, thickness
 - # strips per tile
 - strip line analog band width
- Readout Improvements
 - Firstly --- Existing readout acceptable for many applications
 - deeper buffered ASIC 256 sample buffer @ 10 GSa/s ⇒ 25 ns coverage
 - Increased analog bandwidth on chip see Gary Varner's presentation
 - Deadtimeless operation
 - Custom ASICs or FPGA for different applications
 - Increased # channels per control board? (reduce cost per chan.)

Optimization/Improvement — Cost

- Micro-capillary arrays (glass substrates) ibid → Michael Minot
 - Finishing improvements (yield & performance)
 - Cleaning improvements (yield & performance)
 - · larger pores, application dependent
- Atomic layer deposition process parameters, coating thickness, materials
 - Determine optimum thickness of SEE layers
 - · Cheaper (and possibly better) ALD materials
 - MoF₆ (\$26k/kg) vs. WF₆ (\$800) better uniformity for lesser price
 - Al₂O₃ (TMA @ \$200/100g) vs MgO (\$6k/100g) better performance, higher cost
- + 140 kHz

- Glass & ceramic body components
 - · Optimize ceramic package fabrication
 - batch processing
 see Jason McPhate presentation
 - Glass
- Readout
 - FPGA for low rate applications
- Fabrication methods tiles
 - tubulation
 - · Yield learn by doing

Bob Wagner, Argonne, LAPPD2 DOE Review, 19 Dec 2012

Δ

5

Ultrasoni

cleaning of MCA

Community Support

- Program Goal Several systems in hands of HEP community during Year 3
- Year 1 Devices
 - · 8" tiles (ceramic and glass) from SSL during Year 1
 - First tiles will stay within Collaboration for evaluation and long term testing
- Year 2 Devices
 - Provide SSL Fabricated 8" Tiles & Systems to Very Early Adopters
 - Make available tiles/systems with integrated readout and existing analysis software
- Year 3 Devices Systems to first adopters by end year 3

Community support from labs will be required for this aspect of the program

